查看原文
其他

【热门文章】余家国编委:非金属掺杂调控类石墨相氮化碳基S型异质结内建电场强度

武汉理工大学的余家国教授朱必成博士后Journal of Materiomics第7卷第5期发表了题目为“Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping”的研究论文。

由于光生电子和空穴的快速复合,单一光催化剂的光催化活性往往较低。将两种光催化剂组合形成S型异质结,能够有效促进光生载流子的分离,同时保持体系具有强氧化还原能力,从而获得高光催化活性。在S型异质结机理中,两个组分界面形成的内建电场是促进光生载流子分离的重要驱动力。本文提出了一种利用非金属掺杂调控S型异质结内建电场强度的策略,并以二维/二维(2D/2D)g-C3N4/SnS2和g-C3N4/ZrS2为研究对象,通过第一性原理计算充分验证了这一策略。

首先将单层tri-s-triazine基g-C3N4与SnS2和ZrS2分别堆叠形成g-C3N4/SnS2和g-C3N4/ZrS2复合物。然后以O、P和S原子分别替换g-C3N4中的二配位氮原子,得到O、P和S掺杂的g-C3N4/SnS2和g-C3N4/ZrS2复合物。基于密度泛函理论,计算了这些体系的电子性质,包括功函数、差分电荷密度和Bader电荷等。结果表明,相比于未掺杂的异质结体系,O和S原子掺杂后的复合物界面处有更多的电子转移,而P掺杂对界面电子相互作用没有明显影响。这主要是由于O和S原子掺杂抬高了g-C3N4的费米能级,使得g-C3N4与SnS2和ZrS2之间的费米能级差异更大,形成复合物时需要有更多的界面电子转移才能达到费米能级的平衡。随后,用计算公式验证得到O和S原子掺杂后异质结内建电场的强度增大。本工作可以作为元素掺杂调控S型异质结内建电场的理论参考和依据,为S型异质结的进一步修饰改性提供了一条思路。

https://doi.org/10.1016/j.jmat.2021.02.015

Zhu B C,  Tan H Y ,  Fan J J , Cheng B, Yu J G, Ho W K. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping [J]. J.Materiomics, 7 (2021), pp. 988-997.


Highlights

  • Stable geometric configurations of pristine and (O, P, S)-doped g-C3N4/SnS2 and g-C3N4/ZrS2 composites were established.

  • Effect of nonmetal doping on the work function of g-C3N4 and the charge distribution in heterojunctions was investigated.

  • Strength of built-in electric field in heterojunctions was calculated.

  • S-scheme photocatalytic mechanism was discussed.


图文导读

Fig. 1 g-C3N4及其掺杂体系、SnS2和ZrS2的功函数


Fig. 2 g-C3N4/SnS2和g-C3N4/ZrS2及其掺杂体系的差分电荷密度


Fig. 3 g-C3N4/SnS2和g-C3N4/ZrS2及其掺杂体系的内建电场强度


Fig.4  g-C3N4/SnS2和O-C3N4/SnS2 异质结的光催化机理示意图


作者介绍

Jiaguo Yu received his B.S. and M.S. degrees in chemistry from Central China Normal University and Xi’an Jiaotong University, respectively, and his Ph.D. degree in materials science in 2000 from Wuhan University of Technology. In 2000, he became a Professor at Wuhan University of Technology. His current research interests include semiconductor photocatalysis, photocatalytic hydrogen production, CO2 reduction to hydrocarbon fuels, and so on.





Journal of Materiomics(JMAT),由中国硅酸盐学会主办。该刊引领材料学科发展前沿,注重报道以材料设计、制备、表征及应用技术为主线的系统性前沿研究成果。点击文末“阅读全文“可免费获取所有论文全文
  Journal of Materiomics 入选首批中国科技期刊卓越行动计划(2020年度评估为优秀),被SCI和Scopus收录影响因子6.425(Materials Science, Multidisciplinary;Physics,Applied;Chemistry,Physical均位于Q1分区),Citescore为8.8。

  The Journal of Materiomics is indexed by SCI  (IF=6.425, rank in Q1 of Materials Science, Multidisciplinary;Physics,Applied;Chemistry,Physicaland Scopus (Citescore 8.8), aims to provide a continuous forum for the dissemination of research in the general field of materials science, particularly systematic studies of the relationships among composition, processing, structure, property, and performance of advanced materials. Supported by the Chinese Ceramic Society, the Journal of Materiomics is a peer-reviewed open-access journal.

  For more information on submitting to Journal of Materiomics, Please read journal’s specific Guide for Author:

   https://www.journals.elsevier.com/journal-of-materiomics

 

请长按识别二维码,点击关注我们哟
畅游无机非 金属材料奇趣世界



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存